Bacterial community analysis of sulfate-reducing granular sludge exposed to high concentrations of uranium

Author:

Zeng Taotao1,Zhang Shiqi1,Liao Wei1,Ma Hualong1,Lens Piet N. L.2,Xie Shuibo13

Affiliation:

1. Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, China

2. UNESCO-IHE Institute for Water Education, Delft, The Netherlands

3. Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, China

Abstract

Abstract Sulfate-reducing granular sludge was used for uranium-contaminated wastewater treatment and the responsible microbial community was analyzed. Four feedings, with 6 days for every feeding and 20 mg/L initial uranium, were provided at 27.5 (±2.5) °C. After the four feedings, a uranium removal efficiency of 94% was obtained. Environmental scanning electron microscopy (ESEM) showed that short rod bacteria were the dominant microorganisms in the granular sludge. X-ray energy dispersive spectroscopy (EDS) confirmed the presence of uranium on the granular surface. High-throughput sequencing was carried out for analyzing the bacterial diversity and community structure. The total data set comprised 8,290 high quality sequences, which could be divided into 605 operational taxonomic units (OTUs). The library coverage was 0.96 and the alpha diversity indices of ACE, Chao1, Shannon and Simpson were 2,255.40, 1,346.12, 4.03 and 0.05, respectively. There were 13 bacterial genera present with a ratio of more than 1% of the total 124 genera, among which Desulfovibrio (16.48%), Clostridium IV (9.29%), Bacteroides (3.46%) and Citrobacter (1.41%) were assumed as the functional bacteria, with a cumulative proportion of 30.64% of the total bacterial population. The results provide insights into the bacterial community of sulfate-reducing granular sludge exposed to high concentrations of uranium (20 mg/L).

Funder

National Natural Science Foundation of China

Foundation of China Scholarship Council

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3