Real-time water allocation policies calculated with bankruptcy games and genetic programing

Author:

Bozorg-Haddad Omid1,Athari Elman1,Fallah-Mehdipour Elahe1,Loáiciga Hugo A.2

Affiliation:

1. Department of Irrigation & Reclamation Engineering, Faculty of Agricultural Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Tehran, Iran

2. Department of Geography, University of California, Santa Barbara, CA 93016-4060, USA

Abstract

Abstract Population growth coupled with increased urban and agricultural water use have exacerbated water shortages worldwide. Conflicts among water users frequently arise over scarce water. The application of conflict resolution methods has the potential to resolve such conflicts. Bankruptcy games is a branch of game theory applicable to problems dealing with conflict resolution. This study addresses water allocation to urban-industrial, agricultural, and environmental water uses downstream of the Zarrineh-roud dam, Iran, which diverts water from the Zarrineh-roud River, an important tributary to Lake Urmia. Lake Urmia has been severely stressed by reduction of its water inputs. Water allocation is posed in this study as a bankruptcy game in which the allocation to stakeholders is optimized with proportional (P), adjusted proportional, constrained equal award (CEA), and constrained equal losses methods. The CEA was chosen as the best allocation method based on performance criteria and the Bankruptcy Allocation Sustainability Index. Monthly, real-time, water allocation rule curves were calculated with genetic programming.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference56 articles.

1. Determination of environmental water requirements of Lake Urmia, Iran: an ecological approach;International Journal of Environmental Studies,2007

2. Large-scale nonlinear conjunctive use optimization problem: decomposition algorithm;Journal of Water Resources Planning and Management,2009

3. Optimizing multi-reservoir operation rules: an improved HBMO approach;Journal of Hydroinformatics,2011

4. Multi-reservoir real-time operation rule using fixed length gene genetic programming (FLGGP),2014

5. Sequential sharing rules for river sharing problems,2009

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3