Evaluating occurrence of contaminants of emerging concerns in MF/RO treatment of primary effluent for water reuse – Pilot study

Author:

Farrokh Shad Mojtaba1,Juby Graham J. G.2,Delagah Saied3,Sharbatmaleki Mohamadali1

Affiliation:

1. Department of Civil Engineering, California State Polytechnic University, 3801 W Temple Ave, Pomona, CA 91768, USA

2. Carollo Engineers, Inc., 3150 Bristol St, #500, Costa Mesa, CA 92626, USA

3. US Bureau of Reclamation, Federal Center 6th & Kipling, Bldg 67, Denver, CO 80225, USA

Abstract

Abstract This study experimented with the novel approach of using a microfiltration (MF) and reverse osmosis (RO) treatment train to treat the effluent of a primary settling tank at the Inland Empire Utility Agency in Chino, CA. The pilot used polyvinylidene fluoride hollow-fiber MF modules as pretreatment for an RO skid, which used Hydranautics ESPA2 membranes in a two-stage configuration with a feed capacity of 6 gallon per minute (gpm). In this pilot configuration, researchers monitored the removal of 38 most prevalent contaminants of emerging concerns (CECs) through the MF/RO process. To investigate how operating the RO process at two fixed recovery rates of 55% and 80% would affect the performance of the MF/RO membranes, researchers applied different fluxes (8, 10, 12 and 14 gal/d/ft2 (gfd)) and evaluated the removal of CECs in 1-stage and 2-stage RO configurations. The occurrence of CECs in the MF influent, MF effluent, RO permeate, and RO concentrate were analyzed and studied. In the first phase (1-stage the RO process), flux of 14 gfd showed a better rejection value of inorganics (95.2%) when compared with those of other fluxes. Meanwhile, in the second phase (2-stage RO process), flux of 12 gfd showed a better rejection of inorganics (93.7%) when compared with those of other fluxes. Although concentrations of CECs slightly decreased in the RO permeate as the flux has increased, statistical analysis showed no significant differences between different fluxes in terms of CEC rejection.

Funder

US Bureau of Reclamation

Publisher

IWA Publishing

Subject

Filtration and Separation,Water Science and Technology

Reference77 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3