Efficient approach toward the application of the Godunov method to hydraulic transients

Author:

Pal Susovan1,Hanmaiahgari Prashanth Reddy1,Lambert Martin F.2

Affiliation:

1. Department of Civil Engineering, IIT Kharagpur, Kharagpur 721302, India

2. School of Civil, Environmental and Mining Engineering, University of Adelaide, Adelaide, SA 5005, Australia

Abstract

Abstract The proposed study investigated the applicability of the finite volume method (FVM) based on the Godunov scheme to transient water hammer with shock front simulation, in which intermediate fluxes were computed using either first-order or second-order Riemann solvers. Finite volume (FV) schemes are known to conserve mass and momentum and produce the efficient and accurate realization of shock waves. The second-order solution of the Godunov scheme requires an efficient slope or a flux limiter for error minimization and time optimization. The study examined a range of limiters and found that the MINMOD limiter is the best for modeling water hammer in terms of computational time and accuracy. The first- and second-order FVMs were compared with the method of characteristics (MOCs) and experimental water hammer measurements available in the literature. Both the FV methods accurately predicted the numerical and experimental results. Parallelization of the second-order FVM reduced the computational time similar to that of first-order. Thus, the study presented a faster and more accurate FVM which is comparable to that of MOC in terms of computational time and precision, therefore it is a good substitute for the MOC. The proposed study also investigated the implementation of a more complex convolution-based unsteady friction model in the FVM to capture real pressure dissipation. The comparison with experimental data proved that the first-order FV scheme with the convolution integral method is highly accurate for computing unsteady friction for sudden valve closures.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference32 articles.

1. Experimental examination of unsteady friction models for transient pipe flow simulation;J. Fluids Eng.,2006

2. Water hammer simulation by implicit method of characteristic;Int. J. Press. Vessels Pip.,2008

3. The effects of two dimensionality on pipe transients modeling,1995

4. Application of the LBM with adaptive grid on water hammer simulation;J. Hydoinf.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3