Streamflow forecasting by combining neural networks and fuzzy models using advanced methods of input variable selection

Author:

Dariane A. B.1,Azimi Sh.1

Affiliation:

1. Department of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran

Abstract

Abstract In this paper the performance of extreme learning machine (ELM) training method of radial basis function artificial neural network (RBF-ANN) is evaluated using monthly hydrological data from Ajichai Basin. ELM is a newly introduced fast method and here we show a novel application of this method in monthly streamflow forecasting. ELM may not work well for a large number of input variables. Therefore, an input selection is applied to overcome this problem. The Nash–Sutcliffe efficiency (NSE) of ANN trained by backpropagation (BP) and ELM algorithm using initial input selection was found to be 0.66 and 0.72, respectively, for the test period. However, when wavelet transform, and then genetic algorithm (GA)-based input selection are applied, the test NSE increase to 0.76 and 0.86, respectively, for ANN-BP and ANN-ELM. Similarly, using singular spectral analysis (SSA) instead, the coefficients are found to be 0.88 and 0.90, respectively, for the test period. These results show the importance of input selection and superiority of ELM and SSA over BP and wavelet transform. Finally, a proposed multistep method shows an outstanding NSE value of 0.97, which is near perfect and well above the performance of the previous methods.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3