Numerical investigations of hydraulic transient and thermodynamic characteristics of water flow impacting air pocket inside pipe based on CLSVOF

Author:

Zhu Jianghui1,Duan Xiangyu1,Wu Guohong1,Li Xiaoqin12,Tang Xuelin12

Affiliation:

1. a College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China

2. b Beijing Engineering Research Centre of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083, China

Abstract

Abstract The hydraulic transient and thermodynamic characteristics of water flows impacting an air pocket at the vertical end of an elbow pipe are investigated. The CLSVOF (coupled level-set and volume of fluid) and URANS (unsteady Reynolds-averaged Navier–Stokes) equations with energy equation are implemented, where the RNG (Re-Normalization Group) k–ε turbulence model is adopted and the pressure–density equation is introduced to allow for the water-phase compressibility. All numerical predictions are consistent with the experimental in the literature. The evolution characteristics and mechanism of the water–air interface are analyzed based on the Froude number and dimensionless water–air mixing degree. For air-pocket Type I and Type II with the water–air mixing degree threshold of 10%, based on the first law of engineering thermodynamics and related process laws and basic theory of statistics, the applicability of the ideal gas model in the thermodynamic process of air pocket, the polytropic index regulation in the evolution process and its association with relevant typical thermodynamic processes are systematically analyzed. The polytropic index of air-pocket Type I fluctuates a little with the averaged median of 1.35 in different transient periods under different initial pressure conditions, while it fluctuates largely with the averaged median of 1.26 and 1.21 under the low and the high initial pressure conditions, respectively.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3