Two different approaches for monitoring planning in sewer networks: topological vs. deterministic optimization

Author:

Simone Antonietta1ORCID,Cesaro Alessandra2,Di Cristo Cristiana2,Fecarotta Oreste2,Morani Maria Cristina2

Affiliation:

1. a Department of Engineering and Geology, University ‘G. D'Annunzio’ of Chieti Pescara, Viale Pindaro 42, Pescara 65127, Italy

2. b Department of Civil, Building and Environmental Engineering (DICEA), University Federico II, Via Claudio 21, Naples 80125, Italy

Abstract

Abstract Monitoring of sewer networks (SNs) is an important task whose planning can be related to various purposes, for example contaminant detection and epidemiological studies. This paper proposes two different approaches for the identification of a monitoring system in SNs. The first one proposes the identification of the best monitoring points starting from the knowledge of the hydraulic behavior of the system with respect to specific sensor threshold values through an optimization procedure that maximizes the reliability in detecting a contaminant. A new mathematical model is developed and a global optimization solver is employed to perform the optimization procedure. The second approach is based on the complex network theory (CNT) tools, adopting the in-relevance-based harmonic centrality, and does not require any hydraulic simulation. The metric is evaluated for each node of the network and provides a range of nodes, classified with respect to their importance, useful to identify suitable locations for sensors. With reference to both a benchmark and a real SN, the comparison between the results achieved by both strategies indicates that the two approaches provide comparable solutions in terms of sensor location.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3