Ampicillin removal by adsorption onto activated carbon: kinetics, equilibrium and thermodynamics

Author:

Del Vecchio Paola1,Haro Nathalia K.2,Souza Fernanda Siqueira3,Marcílio Nilson Romeu1,Féris Liliana A.1

Affiliation:

1. Department of Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil

2. Department of Chemical Engineering, University Center Ritter dos Reis, Porto Alegre, RS, Brazil

3. Department of Chemical Engineering, La Salle University, Canoas, RS, Brazil

Abstract

Abstract Pharmaceutical compounds are essential to preserve human and animal welfare, as well as to prevent illnesses. However, the elevated consumption of drugs, followed by incorrect disposal and inefficient wastewater treatment, may increase their environmental risk. In the case of antibiotics, such as ampicillin, some of the already known consequences are bacterial resistance and some toxic interactions with aquatic organisms. The scope of the present work is to investigate the removal of ampicillin through batch adsorption experiments onto granular activated carbon (GAC). The influence of pH and phase contact time were evaluated. Pseudo-first order, pseudo-second order and intraparticle diffusion models were adjusted to experimental data to determine process kinetics. In order to study adsorption equilibrium and thermodynamics parameters, isotherms at 298 K, 298 K and 308 K were constructed. The models of Langmuir, Freundlich and Sips fitted to experimental data. The best results (73% of removal, residual concentration 5.2 mg L−1) were reached at pH 6 and 120 minutes of contact time. Pseudo-first order model better represented the adsorption kinetics (R2 = 0.99), while the Langmuir equation suited well the experimental isotherms at 288 K and 298 K (R2 = 0.998 and R2 = 0.991) and the Sips equation better represented the system at 308 K (R2 = 0.990). Thermodynamic parameters were estimated as ΔG° = −6,000 J mol−1; −6,700 J mol−1; −7,500 J mol−1 at 288 K, 298 K and 308 K respectively, ΔH° = 14,500 J mol−1 and ΔS° = 71.0 J mol−1 K−1. The results indicate that this process is spontaneous, efficient and potentially applicable in the removal of ampicillin from water.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3