Water resource optimization bi-level coupling model and carrying capacity of a typical plateau basin based on interval uncertainty stochastic programming

Author:

Ge Qiang123ORCID,Wang Liying12

Affiliation:

1. a School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan 056038, China

2. b Hebei Key Laboratory of Intelligent Water Conservancy, Hebei University of Engineering, Handan 056038, China

3. c School of Earth and Space Sciences, Peking University, Beijing 100871, China

Abstract

Abstract The bi-level programming coupling model of uncertainty constraints and interval parameter programming is developed to optimize the allocation of water resources and conduct a comprehensive analysis of water resource carrying capacity. The model uses an uncertainty credibility number set and interval value to deal with uncertain factors, and analyses the water resources allocation of Longchuan River in central Yunnan. The competition mechanism and polynomial variation improved algorithm are used to analyze the water consumption, economic benefits and satisfaction in different planning periods when λ = 0.7, 0.8, 0.9, 1.0. The results show that the uncertain bi-level coupling model can cause changes in water allocation, pollutant discharge, system efficiency, etc., and can also effectively balance the mutual constraints between economic benefits and environmental pollution discharge, ensuring a good development trend in the planning year. The water diversion from other basins such as the Central Yunnan Water Diversion Project was transferred to Longchuan River Basin to increase the water supply, and the carrying capacity was further improved, with an increase of water resources by 25.9%. The model research has certain practical and strategic significance for maintaining the sustainable development of the ecological environment in the Longchuan River Basin

Funder

the General Program of National Natural Science Foundation of China

High-level talents and innovative teams in Yunnan Province

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Water Science and Technology,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3