Analysis of Retention Time Distribution (RTD) curves in an anaerobic digester with confined-gas mixing using a compartment model

Author:

Bello-Mendoza Ricardo,Sharratt Paul N.

Abstract

Stimulus-response experiments were conducted in a continuous vessel with a single, centrally mounted draft-tube. The obtained retention time distribution curves were then analysed using conventional methods. These resulted in contradictory interpretation of the experimental data. To overcome this problem, a compartment model was developed to represent the mixing behaviour of this type of system. This mixing model consists of an ideally mixed compartment around the uptake tube and two cascades of tanks-in-series describing the circulation flow. The adjustable parameters of the model are the volume of the ideally mixed compartment, the circulation time and the number of tanks in each circulation loop. These parameters were estimated by fitting simulations to experimental mixing curves. The model consistently described the improvement of mixing with volumetric power input. Furthermore, the correlations found between power input and model parameters allowed the prediction of independently measured pulse-response curves rather well. The proposed compartment model brings the prospect of coupling microbial kinetics to reactor hydraulics to quantify the impact of mixing on the performance of anaerobic sludge digesters.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3