Denitrification kinetics in biological N and P removal activated sludge systems treating municipal wastewaters

Author:

Ekama George A.,Wentzel Mark C.

Abstract

The denitrification kinetics at 12, 20 and 30°C in nitrification denitrification biological excess phosphorus removal (NDBEPR) systems were delineated in batch tests on sludge harvested from laboratory scale M/UCT systems. In some investigations, it was found that the P release and uptake were confined exclusively (>95%) to the anaerobic and aerobic reactors respectively and the observed P removal conformed to the BEPR model of Wentzel et al. In these investigations, due to an absence of anoxic P uptake (substantiated by PHB measurements), it could be inferred that the phosphate accumulating organisms (PAOs) did not significantly contribute to the denitrification. The ordinary heterotrophic organism (OHO) and PAO groups were separated with the aid of the BEPR model of Wentzel et al. Ascribing the denitrification to the OHO group performing this process, the specific rates of denitrification associated with the utilization of slowly biodegradable COD (SBCOD) in the primary (K′2) and secondary (K′3) anoxic reactors were calculated and compared with the rates in ND systems (K2 and K3). In other investigations it was found that P release and uptake were not confined exclusively to the anaerobic and aerobic reactors respectively and the observed P removal was only about 60% of that expected from the BEPR model of Wentzel et al. In these investigations significant P uptake under anoxic conditions was observed so the PAOs may have been involved with the denitrification. However, the denitrification rates were calculated as before by attributing it exclusively to the OHOs. Widely varying K'2 rates were observed at 20°C, ranging from 0.071 to 0.335 mgNO3-N/(mgAHVSS.d). The variation in K' rate is mainly due to widely varying OHO active fraction estimates for NDBEPR systems.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3