Water allocation using game theory under climate change impact (case study: Zarinehrood)

Author:

Hemati Hasti1,Abrishamchi Ahmad1

Affiliation:

1. Department of Civil Engineering, Sharif University of Technology, Tehran, Iran

Abstract

Abstract The combined effects of climate change and growing water demand due to population growth, industrial and agricultural developments cause an increase in water scarcity and the subsequent environmental crisis in river basins, which results in conflicts over the property rights and allocation agreements. Thus, an integrated, sustainable and efficient water allocation considering changes in water resources due to climate change and change of users' demands is necessary. In this study, the drainage basin of Zarinehrood was chosen to evaluate the function of selective methods. Assessing climate change impact scenarios of the Fifth IPCC reports, e.g., RCP2.6, RCP4.5, RCP6.0 and RCP8.5, have been used. For downscaling outputs of GCMs an artificial neural network (ANN) and for bias correction a quantile mapping (QM) method have been used. Using a bargaining game and the Nash bargaining solution (NBS) with two methods, one symmetric and two AHP methods, the water available for users was allocated. Results indicate an overall increase in temperature and precipitation in the basin. In bargaining game solutions, AHP provided better utilities for players than the symmetric method. These results show that with water management programs and use of a cooperative bargaining game, water allocation can be done in an efficient way.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Reference61 articles.

1. Integrated water resources management (IWRM): an approach to face the challenges of the next century and to avert future crises;Desalination,1999

2. Feasible adaptation strategies for increased risk of flooding in cities due to climate change;Water Science and Technology,2009

3. Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models;Journal of Hydrology,2015

4. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies;International Journal of Climatology,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3