Experiment and fitting calculation of migration critical velocity of small-sized sediment particles erosion in rainwater pipeline

Author:

Liu Cuiyun1,Chen Yanzhi1,Yang Yuting1,Zhou Jingqin1,Wang Yiyang1,Zhou Jie1,Zhang Xiaohua1

Affiliation:

1. College of Urban Construction, Nanjing Tech University, Nanjing 211816, China

Abstract

Abstract The migration critical velocity of small-sized sediment particles was investigated through experiments under different particle sizes, pipe wall roughness, and sediment thickness. Such experiments were carried out to simulate the erosion process of small-sized sediment particles in a rainwater pipeline during rainfall. The mathematical models were established via quadratic fitting to calculate the critical velocity of migration. Results showed that small particles had powerful cohesive force, and aggregates had strong erosion resistance. So, for the small-sized particles (in the range of 0.33–0.83 mm), the smaller the particle size, the larger the critical velocity. When the pipe wall roughness was large, the ‘starting’ particle resistance was high. A large flow dynamic was needed to overcome such resistance. Thus, the critical velocity was great. The critical velocity was also large when the sediment thickness was large. The difference rate between the critical velocity calculated by mathematical models and the measured value was within the range of −3.60% to 5.33% and had good consistency. Under the research conditions, the critical velocity ranges of the four commonly used pipes; namely, plexiglass, steel/PVC, galvanized/clay, and cast iron pipes, were calculated.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3