Modulation of transient pressure by an air pocket in a horizontal pipe with an end orifice

Author:

Li Lin1,Zhu David Z.2

Affiliation:

1. College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China

2. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada T6G 2W2

Abstract

Abstract In urban drainage systems, a sudden increase in the flow rate can cause the transition of the flow from open channel to pipe flow, and the entrapment of large air pockets in sewers, which might result in serious geysers and water-hammer like pressure events. This paper presents a numerical analysis of flow processes associated with the pressurization and release of an air pocket in order to study its influence on transient pressure in a horizontal pipe with an end orifice. The influence of the air pocket inside the pipe on the peak pressure can be described in two distinct regimes. In regime I for the pipe with a small orifice, the peak pressure is modulated by the pressurization and expansion of the air pocket and its subsequent damping. In regime II for the pipe with a large orifice, air can be quickly expelled, and the water column directly impinges on the pipe end wall and causes water-hammer like pressure. With the increase of the orifice size, the peak pressure decreases due to the change in the water velocity. In the study cases, the peak pressure in regime I is about two times the inlet pressure, while it can be more than forty times in regime II.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference23 articles.

1. Maximum pressure evaluation during expulsion of entrapped air from pressurized pipelines;Journal of Applied Fluid Mechanics,2017

2. Influence of liquid length variation in hydraulic transients;Journal of Hydraulic Engineering,1992

3. Geyser formation by release of entrapped air from horizontal pipe into vertical shaft;Journal of Hydraulic Engineering,2017

4. Transient flow caused by air expulsion through an orifice;Journal of Hydraulic Engineering,2008

5. Fluent Manual 2005 Manual and User Guide of Fluent Software. Fluent Inc.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3