Removal of catechol from water by modified dolomite: performance, spectroscopy, and mechanism

Author:

Khalfa Aouda1,Mellouk Senia1,Marouf-Khelifa Kheira1,Khelifa Amine1

Affiliation:

1. Laboratoire de Structure, Elaboration et Applications des Matériaux Moléculaires (S.E.A.2M.), Département de Génie des Procédés, Université de Mostaganem, B.P. 981, R.P., Mostaganem 27000, Algeria

Abstract

Abstract Dolomite was treated at 800 °C (D800), characterized, and used in the adsorptive removal of catechol (1,2-dihydroxybenzene) from aqueous solutions. The performances of the D800 sample, named dolomitic solid, were compared with those of the raw material. A bibliographic review shows that the data on the adsorption of phenolic compounds by dolomites are non-existent. Kinetic data, equilibrium isotherms, thermodynamic parameters, and pH influence were reported. Special attention was paid to the spectroscopic study, before and after adsorption. The purpose was to understand the mechanism of catechol uptake on dolomitic materials. Kinetics follows the pseudo-second order model. The Redlich–Peterson isotherm provides the best correlation of our isotherms. Affinity follows the sequence: D800 ≫ raw dolomite. The process is spontaneous at low temperatures and exothermic. After catechol adsorption, the shape of the band in the 3,600−3,000 cm−1 range and its red shift towards 3,429 cm−1 reflect a deep involvement of OH groups both of D800 and catechol, which confirm hydrogen bonding via their respective OH. On this basis, a schematic illustration was proposed. The understanding of the phenolic compound–dolomitic solid interactions constitutes a fundamental approach to developing the application of these materials in wastewater treatment.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3