Initial pH and K+ concentrations jointly determine the types of biogenic ferric hydroxysulfate minerals and their effect on adsorption removal of Cr(VI) in simulated acid mine drainage

Author:

Song Yongwei1,Zhang Jianyu2,Wang Heru1

Affiliation:

1. Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China

2. School of Environmental Studies, China University of Geosciences, Wuhan 430074, China

Abstract

Abstract It is of practical significance to promote the transformation of Fe in acid mine drainage (AMD) into ferric hydroxysulfate minerals with strong ability to remove heavy metals or metalloids. To investigate the types of biogenic ferric hydroxysulfate minerals generated in AMD by Acidithiobacillus ferrooxidans (A. ferrooxidans), different pH and K+ concentrations are tested for the formation of precipitates in media containing 160 mmol/L Fe2+. The Cr(VI) removal efficiencies of ferric hydroxysulfate minerals in AMD with different acidities are also compared. Results indicate that the mineralizing abilities of the initial pH levels (pH 3.0 > pH 2.5 > pH 2.0) and K+ concentrations (53.3 mmol/L > 3.2 mmol/L ≈ 0.8 mmol/L) differ, with cumulative Fe precipitation efficiencies of 58.7%, 58.0%, and 44.2% (K+ = 53.3 mmol/L), and 58.7%, 29.9%, and 29.6% (pH 3.0) after 96 h of A. ferrooxidans incubation, respectively. X-ray diffraction indicates that K-jarosites are formed in the treatments n(Fe)/n(K) = 0.1 and 3 at pH 2.0–3.0, while only schwertmannite is generated in a system of pH 3.0 and n(Fe)/n(K) = 200. X-ray photoelectron spectroscopy reveals that HCrO4− may be adsorbed as an inner-sphere complex on schwertmannite when the AMD pH is 3.0.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3