Electrochemical degradation of chloramphenicol using Ti-based SnO2–Sb–Ni electrode

Author:

Li Dan1,Zhang Libao1,Gao Weichun1,Meng Jing1,Guan Yinyan1,Liang Jiyan1ORCID,Shen Xinjun1

Affiliation:

1. Shenyang University of Technology, Shenyang 110870, China

Abstract

Abstract Antibiotic residues may be very harmful in aquatic environments, because of limited treatment efficiency of traditional treatment methods. An electrochemical system with a Ti-based SnO2–Sb–Ni anode was developed to degrade a typical antibiotic chloramphenicol (CAP) in water. The electrode was prepared using a sol–gel method. The performance of electrode materials, impact factors and dynamic characteristics were evaluated. The Ti-based SnO2–Sb–Ni electrode was compact and uniform as shown by characterization using SEM and XRD. The electrocatalytic oxidation of CAP was carried out in a single-chamber reactor by using a Ti-based SnO2–Sb–Ni electrode. For 100 mg L−1 CAP, the CAP removal ratio of 100% and the TOC removal ratio of 60% were obtained at the current density of 20 mA cm−2 and in a neutral electrolyte at 300 min. Kinetic investigation has shown that the electro-oxidation of CAP on a Ti-based SnO2–Sb–Ni electrode displayed a pseudo-first-order kinetic model. Free radical quenching experiments presented that the oxidation of CAP on Ti-based SnO2–Sb–Ni electrode resulted from the synergistic effect of direct oxidation and indirect oxidation (·OH and ·SO4−). Doping Ni on the Ti/SnO2–Sb electrode for CAP degradation was presented in this paper, showing its great application potential in the area of antibiotic and halogenated organic pollutant degradation.

Funder

LiaoNing Revitalization Talents Prograrn

Liaoning BaiQianWan Talents Program

Liaoning Technology Innovation Center of Water Treatment and Resource

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3