Evaluation of Sensitivity and Observability of the State Vector for System Identification and Experimental Design

Author:

Ayesa E.1,Flórez J.2,Larrea L.1,García-Heras J. L.1

Affiliation:

1. Department of Environmental Engineering, CEIT, Apdo. 1555, 20080 San Sebastián, Spain

2. Elecricity Department, Escuela Superior de Ingenieros Industriales, University of Navarra, Apdo. 1674, 20080 San Sebastián, Spain

Abstract

This paper presents two new algorithms to evaluate numerically the state and coefficient's observability and sensitivity in dynamic models. The observability algorithm computes the numerical condition of observability matrix as an index of the ability to identify the unknown states or coefficients. The sensitivity algorithm quantifies dynamically the influence of unknown variables on measurable variables. Both algorithms are useful tools to predict the identification accuracy and to design the best operational conditions to estimate each one of the unknown parameters. The algorithms have been applied to discuss the identification of kinetic coefficients in the IAWPRC biodegradation model, using an experimental procedure based on changing the values of reactor volumes.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of the International Water Association activated sludge models to describe aerobic sludge digestion;Environmental Technology;2011-12

2. Ipclass — an interactive program for calibrating activated sludge systems;Environmental Modelling & Software;2002-12

3. Parameter Estimation that Improves Validity of Model for a Certain Model Use;IFAC Proceedings Volumes;2000-06

4. A hybrid neural-genetic multimodel parameter estimation algorithm;IEEE Transactions on Neural Networks;1998

5. Bioprocess Model Identification;Advanced Instrumentation, Data Interpretation, and Control of Biotechnological Processes;1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3