Dynamic Behavior of Intermittent Buried Filters

Author:

Boller M.,Schwager A.,Eugster J.,Mottier V.

Abstract

Buried filters were investigated experimentally in pilot and full scale as typical on-site treatment for small wastewater flows. The filters were operated by intermittent flushing which causes the water and the pollutant transport through the unsaturated media to be of a highly dynamic nature. Water transport and tracer studies at low and high hydraulic flush loads revealed frequent flushing at low loads to be superior to less frequent flushing at high loads for treatment of the same daily amount of wastewater. These findings were confirmed in a full scale plant through monitoring of the dynamic washout of unoxidized matter in terms of COD and NH4+ after application of different hydraulic loads. The moisture retention capacity of the filter media correlated to the grain size distribution was found to be an important parameter. COD-removal and nitrification rates depend strongly on the oxygen supply to the media. In general, the oxygen diffusion into the media and the air exchange, induced by intermittent flushing, are sufficient. However, when applying relatively large hydraulic loads and coarse filter grains, especially in the range above 1 mm, buried filters tend to larger breakthroughs of unoxidized matter due to short retention times and instantaneous lack of oxygen. Experiments on average treatment performance were carried out and showed that under optimized conditions even wastewaters containing relatively high ammonia contents (150 gNH4+-N/m3) can be fully nitrified when limestone type filter material is used. Full scale operation revealed further that careful pre-treatment (e.g. septic tank) for the removal of most of the suspended solids is necessary to guarantee safe operation.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3