Enhancing the ability of two kinds of oil-degrading bacteria to treat oily sludge by optimising the growth conditions using a response surface methodology

Author:

Fu Qiang1ORCID,Yang Yu12,Zhao Mengshi1,Zhang Li1,Shan Si1

Affiliation:

1. a School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China

2. b Key Laboratory of Biometallurgy, Ministry of Education, 932 South Lushan Rd., Changsha, Hunan 410083, China

Abstract

Abstract Biosurfactant are Surfactants produced by certain microorganisms. These biosurfactants increase the biodegradability of insoluble pollutants. In this study, the fermentation products of Pseudomonas stutzeri Lh-42 (PS) and Rhodococcus sp. PR-1 (RD) were studied by Oil spreading method, emulsifying activity and infrared spectrum analysis. It was proved that these fermentation products were biosurfactant. And then the fermentation conditions of PS, RD were optimised by Placket-Burman (PB) design, hill-climbing experiment and response surface methodology (RSM). N source and liquid loading were significant factors in the fermentation of PS, while C source and speed were significant factors in the fermentation of RD. The surface tension was found to be as low as 39.53 ± 0.25 mN/m for the fermentation conditions of PS with an N source of 4.62 ± 0.41 g and a liquid loading of 28.4 ± 0.3%. The surface tension was 40.70 ± 0.47 mN/m for the incubation conditions of RD with a C source of 26.94 ± 0.62 g and a rotational speed of 210 r/min. Finally, the experimental results for the degradation of oily sludge showed that the degradation rate of oily sludge was improved when the fermentation conditions were optimised. The results of the infrared spectroscopy analysis showed that the organic matter content of the oily sludge treated with PS bacteria was significantly reduced after the optimised fermentation. This study provides a theoretical reference for further use of these bacteria to produce biosurfactants to treat organic matter.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3