Photocatalysis process to treat polluted water by azo dye Cibacron Brilliant Yellow 3G-P

Author:

Radia Djouder12,Fouzia Touahra3ORCID,Rachida Rihani1,Wahib Naceur Mohamed4,Bentahar Fatiha1

Affiliation:

1. a Laboratoire Phénomènes de transfert (LPDT), Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab-Ezzouar 16111, Algiers, Algeria

2. b Centre de Développement des Énergies Renouvelables (CDER), Algiers 16340, Algeria

3. c Research Centre in Analytical Chemistry and Physics (CRAPC), BP 248, Algiers 16004, Algeria

4. d Laboratoire Eau, Environnement, et Developpement Durable (2E2D), Chemical Engineering Department, Blida1 University, BP 270 Blida, Algeria

Abstract

Abstract The main objective of this study was to investigate the photodegradation of azo dye Cibacron Brilliant Yellow 3G-P using Anatase, Degussa-P25 and ZnO. These semi-conductors were characterized using XRD, BET and TEM-EDX. The variation of the amount of semi-conductors significantly affect the rate of color removal. The decolorization rate increased as the catalyst dosage was increased. Other parameters were also studied, such as stirring speed, pH, and initial dye concentration. It was found that the rate of decolorization increases with the increase of stirring speed. Decolorization of about 30, 60 and 80% was respectively achieved in the case of Anatase, Degussa-P25 and ZnO at low stirring speed (50rpm). At pH = 3, the degradation rate was found to be higher than the alkaline pH, about 95.58 and 85.71% of color has been decolorized with Anatase and Degussa-P25 respectively. While using ZnO, the color removal reached maximum in acidic and alkaline solutions, more than 95% of dye was decolorized. The concentrations dye solutions less than 80ppm led to the removal rate of about 95% in the case of ZnO, while it was only about 8–15% in the case of TiO2 with the concentration more than 20 ppm.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3