Mechanisms and strategies of microbial cometabolism in the degradation of organic compounds – chlorinated ethylenes as the model

Author:

Luo Wei1,Zhu Xiangcheng2,Chen Wenting1,Duan Zhibing3,Wang Lin1,Zhou Ya1

Affiliation:

1. The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, and School of Biotechnology, Jiangnan University, Wuxi 214122, China

2. Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China

3. Department of Neuroscience & Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA

Abstract

The universal microbial cometabolism provides us with an effective approach to remove man-made xenobiotics. However, the cometabolic bioremediation of toxic organic compounds has not been widely initiated due to the obscure underlying fundamentals in the studies or applications of microbial cometabolism. This review summarizes the current research trends in mechanistic understanding of microbial cometabolism, especially with regard to its potential applications. The crucial factors including key enzyme, enzyme inhibition, toxic effects and energy regulation are discussed, which all significantly contribute to the cometabolic bioremediation of pollutants. The presented review of chlorinated ethylene cometabolism in this overview has further confirmed the fundamentals and hypotheses mentioned above, and thus cometabolism of chlorinated ethylenes has been regarded as a role model of pollution remediation technology using microbial cometabolism. The subsequent prospective research should provide insights into the ambiguous mechanism of microbial cometabolism and help us to develop more efficient bioremediation of progressive pollution.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3