Affiliation:
1. Department of National Defense Architecture Planning and Environmental Engineering, Logistical Engineering University, Chongqing 401311, China
2. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
Abstract
In this study, the potential of the oriental arborvitae leaves for the adsorption of Pb(II) from aqueous solutions was evaluated. Brunauer–Emmett–Teller analysis showed that the surface area of arborvitae leaves was 29.52 m2/g with pore diameter ranging from 2 to 50 nm. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy showed C—;C or C—;H, C—;O, and O—;C=O were the main groups on the arborvitae leaves, which were the main sites for surface complexation. Finally, effects of adsorbent dose, initial pH, contact time, and coexisting natural organic matters (humic acid (HA)) on the adsorption of Pb(II) were investigated. The results indicated that the pHZPC (adsorbents with zero point charge at this pH) was 5.3 and the adsorption reached equilibrium in 120 min. Isotherm simulations revealed that the natural arborvitae leaves exhibit effective adsorption for Pb(II) in aqueous solution, giving adsorptive affinity and capacity in an order of ‘no HA’ > 5 mg/L HA > 10 mg/L HA, and according to the Langmuir models, the maximum adsorptions of Pb(II) were 43.67 mg/g, 38.61 mg/g and 35.97 mg/g, respectively. The results demonstrated that the oriental arborvitae leaves showed high potentials for the adsorption of Pb(II) from aqueous solutions.
Subject
Water Science and Technology,Environmental Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献