Interception of a Dense Spruce Forest, Performance of a Simplified Canopy Water Balance Model

Author:

Alavi Ghasem1,Jansson Per-Erik2,Hällgren Jan-Erik3,Bergholm Johan4

Affiliation:

1. Dept. of Soil Sciences, SLU, Uppsala, Sweden

2. Dept. of Civil and Environmental Engineering, KTH, Stockholm, Sweden

3. Dept. of Forest Genetics and Plant Physiology, SLU, Umeå, Sweden

4. Dept. of Ecology and Environmental Research, SLU, Uppsala, Sweden

Abstract

The process of interception was studied in 25-year-old dense stands of Norway spruce in South Sweden. The throughfall was measured intensively during one month and extensively during four growing seasons using water captured by large roofs and with randomly distributed funnel gauges. It was found that about 45% of the precipitation was lost as interception loss from this dense forest canopy. However, many sources of potential error, particularly in measurement of precipitation and throughfall, may be involved in quantifying the interception loss. The data set was used to test the interception part of a hydrological model, SOIL. The model uses a simple threshold formulation to calculate the accumulation of intercepted water in a single storage variable. The model was able to estimate fairly well the long-term cumulative interception loss from the forest canopy However, similarly to many other models, SOIL showed a pattern of overestimation of the interception loss during events with small precipitation and underestimation during events with large precipitation. It was concluded that the storage capacity was of major importance in modelling of long-term interception loss. Tree canopy water storage capacity on a leaf area basis was estimated to 0.7 mm which was three times larger than that obtained from a precipitation/throughfall graph.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3