Streamflow prediction in ungauged basins through geomorphology-based hydrograph transposition

Author:

de Lavenne A.12,Boudhraâ H.3,Cudennec C.12

Affiliation:

1. INRA, UMR1069, Sol Agro et hydrosystéme Spatialisation, F-35000 Rennes, France

2. AGROCAMPUS OUEST, UMR1069, Sol Agro et hydrosystéme Spatialisation, F-35000 Rennes, France

3. Ecole Supérieure des Ingénieurs de l'Equipement Rural, 9070 Medjez El Bab, Tunisia

Abstract

Geomorphology-based rainfall–runoff models are particularly helpful for predicting hydrology in ungauged basins. The robustness, generality and flexibility of the modelling approach make it able to deal with a wide variety of processes, events and scales. It allows a rainfall–runoff transfer function to be estimated for any basin without needing to measure discharge. The aim of this study is to transpose hydrological observations from gauged to ungauged basins to predict streamflow hydrographs. It considers pairs of nested and neighbouring basins, the first one providing information for the second ungauged one. A time-series of the donor basin's discharge is deconvoluted by inverting its geomorphology-based transfer function to assess the time-series of net rainfall. The latter is then transposed to the receiver basin, where it is convoluted with the reciever basin's transfer function to predict the hydrograph therein. The methodology was implemented with virtual and real rainfall–runoff events on a set of basins in temperate Brittany, France. Different time scales and spatial configurations were tested. Goodness-of-fit of model predictions varied by basin pair. High prediction accuracy was observed when transposing hydrographs between nested basins differing greatly in size. Several ways to improve the approach are identified by relaxing simplifying assumptions.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference55 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3