Removal of water hardness using zeolite synthesized from Ethiopian kaolin by hydrothermal method

Author:

Aragaw Tadele Assefa1,Ayalew Adane Adugna1

Affiliation:

1. Faculty of Chemical and Food Engineering Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia

Abstract

Abstract The use of low cost materials in zeolite synthesis becomes an area of important interest in water softening. This research is aimed to utilize kaolin for zeolite synthesis with hydrothermal method. Mechanical, thermal chemical treatments of raw kaolin were used for zeolite synthesis. Fourier Transform Infrared Spectrometry (FTIR), AAS, XRD, surface area (BET), differential scanning calorimetry and TGA were used to characterize kaolin and zeolite and UV–VIS/spectrometer were used for adsorption capacity of ion exchange. Effect of contact time, pH solution and temperature of the solution were studied for batch experiments. XRD values indicated that the prepared material is showed as fully crystalline and primarily amorphous. Before and after hardness removal sample transmittance percentage intensity showed a wide range of difference. From this study, it can be deduced that Zeolite can be used as a low cost water softening agent. At room temperature, the residue is well with calcium and badly with magnesium, whereas affinity toward Mg ions increases to acceptable levels at 60 °C. The cation exchange capacity of zeolite was found to be dependent on contact time. The batch experiments of removing Ca2+ and Mg2+ show that the adsorption capacity of zeolite in calcium ion is higher affinity than magnesium ion.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference36 articles.

1. Hydrothermal synthesis of zeolites from polish coal fly ash;Polish Journal of Environmental Studies,2005

2. Novel method of metakaolin dealumination -preliminary investigation;Journal of Applied Sciences Research,2010

3. Combined ion exchange treatment for removal of dissolved organic matter and hardness;Water Research,2010

4. Synthesis of faujasite zeolites from Kankara Kaolin Clay;Journal of Applied Sciences Research,2007

5. Kinetics of cation exchange capacity of homoionic sodium form NaY zeolite;International Journal of Innovative Research in Science, Engineering and Technology,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3