Anaerobic digestion: impact of future greenhouse gases mitigation policies on methane generation and usage

Author:

Greenfield P.F.1,Batstone D.J.2

Affiliation:

1. University of Queensland, St Lucia, Queensland, Australia

2. Environment and Resources, Technical University of Denmark, Lyngby, Denmark

Abstract

The debate as to whether carbon dioxide, methane, nitrous oxide and other greenhouse gas emissions will become subject to increasing regulation, increased restrictions, and probably to some form of carbon tax, has moved from a simple “yes” or “no” to “when”. Wastewater treatment plants will be significantly impacted by increased energy costs and by specific regulations and/or penalties associated with emissions of methane and nitrous oxide. In this paper, the greenhouse gases emissions of different wastewater process options are estimated. The paper outlines the increasing need for wastewater treatment plants to factor greenhouse gas mitigation issues into their medium- as and long-term strategies, and identifies anaerobic enhouse as processes as being at the core of such strategies. Further, the paper identifies a number of key research challenges to be addressed if such strategies are to play a larger role in attenuating the likely impacts of GHG mitigation requirements on wastewater treatment plant design and operation.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Portable Methane Telemetry System Based on TDLAS;Proceedings of International Conference on Artificial Intelligence and Communication Technologies (ICAICT 2023);2023-11-14

2. Carbon emission efficiency evaluation of wastewater treatment plants: evidence from China;Environmental Science and Pollution Research;2023-05-27

3. Techno-Economic Evaluation of Ozone Application to Reduce Sludge Production in Small Urban WWTPs;Sustainability;2022-02-22

4. Two-Stage anaerobic digestion in agroindustrial waste treatment: A review;Journal of Environmental Management;2021-03

5. A simple kinetic model applied to anaerobic digestion of cow manure;Environmental Technology;2020-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3