Concentration of pig slurry by evaporation: anaerobic digestion as the key process

Author:

Bonmatí A.1,Campos E.2,Flotats X.2

Affiliation:

1. Laboratory of Chemical Engineering and Environment, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain (E-mail: a.bonmati@lequia.udg.es)

2. Laboratory of Environmental Engineering, Department of Environment and Soil Science, University of Lleida, Rovira Roure, 19, 25198 Lleida, Spain (E-mail: flotats@macs.udl.es)

Abstract

Nutrient redistribution between areas with a structural pig slurry surplus and those with a shortage, is limited by the high cost of transportation and spreading, due to the high water content in slurry (more than 90%) and its relative low nutrient concentration. Water can be removed from slurry by evaporation, through the application of waste heat from a power plant or from other processes. Apart from obtaining a concentrate with an obviously higher nutrient concentration than the original slurry, another objective is to obtain clean water as condensate. The objective of this work was to study the batch vacuum evaporation of pig slurry liquid fraction, to evaluate the economic feasibility and to evaluate condensate quality as a function of both pH (4, 5 and 6) and pig slurry type (fresh slurry and anaerobically digested slurry). Results showed that condensate characteristics (ammonia nitrogen, VFA, COD) were strongly dependent on these variables. Previous anaerobic digestion presented clear advantages: it provided a fraction of the required energy and it removed organic matter, preventing its volatilisation in the evaporation process and providing higher quality condensates. These advantages make the combined treatment strategy economically more feasible than the evaporation process alone.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3