Using reverse phase high performance liquid chromatography as an alternative to resin fractionation to assess the hydrophobicity of natural organic matter

Author:

Xing Linan1,Lo Theodore2,Fabris Rolando3,Chow Christopher W. K.134,van Leeuwen John14,Drikas Mary14,Wang Dongsheng14

Affiliation:

1. State Key Laboratory of Environmental Aquatic Chemistry, RCEES, CAS, POB 2871, Beijing 100085, China

2. Everline Ltd., 12/F, Shanghi Centre, Mong Kok, Kowloon, Hong Kong

3. Australian Water Quality Centre, SA Water, 250 Victoria Square, Adelaide, SA 5000, Australia

4. SA Water Centre for Water Management and Reuse, University of South Australia, Mawson Lakes, SA 5095, Australia

Abstract

Resin fractionation is the most widely used technique to isolate and characterize natural organic matter (NOM) based on its hydrophobicity and hydrophilicity, however, it is also recognized as a time consuming technique. This paper describes the use of reverse phase high performance liquid chromatography (RPHPLC) as a rapid assessment technique to determine the hydrophobicity/hydrophilicity of NOM. The optimum column separation condition was achieved and without the need for concentrating the sample prior to analysis and with good reproducibility of the peak retention time and the peak area. The characterization results were further compared with the traditional resin fractionation technique using DAX-8 and XAD-4 resins. The results demonstrated that the polarities defined by the two methods were different but consistent and also that the fractions absorbed onto XAD-4 were less hydrophobic than those absorbed onto DAX-8. The difference in definition between resin fractionation and RPHPLC were further investigated.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contribution of dissolved organic matter to chemical oxygen demand in three Chinese lakes and in treated sewage;International Journal of Environmental Science and Technology;2019-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3