Optimizing water efficiency and energy productivity in choosing a cropping pattern

Author:

Ye Zhigang12,Miao Ping3,Li Ning4,Wang Yong1,Zhang Wenli4,Yin Shan1

Affiliation:

1. a College of Geographical Science, Inner Mongolia Normal University, Hohhot, Inner Mongolia 010022, China

2. b Key Laboratory of Remote Sensing and Geographic Information Systems, Inner Mongolia Normal University, Inner Mongolia, Hohhot 010022, China

3. c River and Lake Protection Center, Ordos Water Conservancy Bureau, Ordos, Inner Mongolia 017000, China

4. d Institute of Water Resources, Inner Mongolia Academy of Water Resources, Hohhot, Inner Mongolia 010010, China

Abstract

Abstract In the current century, the sustainable production of agricultural products is one of the main challenges facing humanity. The amount of water consumption, energy, and net income as important components of the sustainability of agricultural systems is of special priority and importance. This study used linear and multi-objective programming models with the aim of maximizing five indicators of cost efficiency (CE), irrigation efficiency (IE), energy productivity (EP), energy efficiency (EE), and food efficiency (FE) to determine the cropping pattern of small-scale farms cultivated per hectare in the agricultural year. There are 160 questionnaires classified by random sampling method in agricultural sectors in Inner Mongolia, China. The results showed that determining the cropping pattern using multi-objective planning increases irrigation efficiency and energy efficiency compared with linear modeling. Considering the conditions of limited water resources in the region and the policies of the country in the agricultural sector, cropping patterns with the objective functions of maximization of IE and CE were proposed.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3