Developing an optimal plan to improve irrigation efficiency using a risk-based central force algorithm

Author:

Jiang Junmin1,Chen Shi2

Affiliation:

1. a Business School, Huanggang Normal University, Huanggang, Hubei 438000, China

2. b Library, Huanggang Normal University, Huanggang, Hubei 438000, China

Abstract

Abstract Losses in surface irrigation include deep percolation and runoff, which is one of the ways to increase the efficiency of furrow irrigation, using a closed-end mode in irrigation systems. This research was conducted to evaluate the effects of geometrical variables (slope and length of furrow) and flow control (inflow rate and cut-off time) on application efficiency (AE) and the uniformity of water distribution in a closed-end furrow irrigation system. The length, slope, inflow rate, and cut-off time are considered as the decision-making variables for developing the multi-objective genetic algorithm based on the non-dominated sorting. For this purpose, three irrigation furrows with the closed-end system were considered. The optimization algorithm for calculating the objective functions involves maximizing the minimum water depth and minimizing the infiltration depth in a modeling loop. The optimization algorithm was linked to the WinSRFR software to calculate the objective functions. The results showed that the best combination of inflow rate and the cut-off time for 75 mm of required water depth was 1.9 L/s/m and 150 min, respectively, which increased AE and distribution uniformity to 79 and 78%. Furthermore, the AE in the closed-end furrow irrigation system is higher (30–50%) than the open-end method in different scenarios.

Funder

Soft Science Research Project of Technology Innovation Special Project of Hubei Department of Science and Technology

Huanggang Science and Technology Project

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3