Optimization analysis of separation conditions of washed water containing a lead complex and characterization of the precipitation products

Author:

Cai Wenmin1,Chen Jiajun1,Wang Qingwei1,Wei Meng1

Affiliation:

1. Key Laboratory for Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China

Abstract

Abstract Presently, the large amount of industrial leaded wastewater creates a great challenge to both environmental governance and wastewater recycling. Lead complexes in washed water must be removed mostly before the washed water can be recycled. This paper reports the mechanism and factors of removing Pb complexes in simulated washed water by the sulfide precipitation method. The reaction time, sodium sulfide dosage, pH, and polymeric aluminum chloride (PAC) dosage were analyzed and the optimal conditions were explored. The composition of the reaction products was also verified by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Additionally, the kinetics of the precipitation reaction of sodium sulfide and Pb-EDTA were studied. These results showed that the Pb removal efficiency reached 91.7% under the optimal process conditions which were as follows: the dosages of Na2S and PAC were 188 mg/L (Na2S/Pb2+ molar ratio of 5:1) and 30 mg/L, respectively, the reaction time was 40 min, and the pH was 9. It was demonstrated using SEM and XRD that the reaction product in the separation process was PbS and the precipitation process was fitted to the following first-order reaction kinetics equation: Ct = 89.1e−0.1047t + 10.1 (R2 = 0.9929; Ct is Pb concentration at reaction time t).

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3