Effects of tributary inflows on unsteady flow hysteresis and hydrodynamics in the mainstream

Author:

Tang Hongwu12,Chen Kang12,Yuan Saiyu12,Xu Lei12,Qiu Jiajian12,Lin Qingwei12,Gualtieri Carlo3

Affiliation:

1. a The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China

2. b Key Laboratory of Hydrologic-Cycle and Hydrodynamic-System of Ministry of Water Resources, Hohai University, Nanjing, Jiangsu 210024, China

3. c Department of Structures for Engineering and Architecture DIST), University of Naples Federico II, Naples 80125, Italy

Abstract

ABSTRACT Flooding propagation is a crucial aspect of hydrological monitoring and forecasting. Previous studies have focused on hysteresis in the rating curve, caused by energy loss during flood propagation. However, the impact of tributary inflow on hysteresis downstream remains unclear, leading to inconsistent field observations on whether it strengthens or weakens hysteresis. In this study, we conducted flume experiments to identify the relationship between hysteresis in unsteady flow and the discharge magnitude of the tributary and the unsteady flow period in the mainstream. It was found that the discharge variations in the tributary had a larger influence on hysteresis compared to the periodical variations in the mainstream unsteady flow. Interestingly, the hysteresis of the unsteady flow had an initial strengthening followed by weakening as the tributary discharge increased. When the tributary inflow was low, the widening of the downstream cross-section sharpened the flood wave, increasing the hysteresis. However, as the tributary discharge increased to generate a backwater effect on the mainstream, the pressure gradient flattened flood waves, thereby weakening the hysteresis. This study improves our understanding of how tributary inflow affects flood propagation in the mainstream, offering new insights for flood prediction and control.

Funder

the National Key R&D Program of China

the National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

the Natural Science Foundation of Jiangsu Province

the 111 Project

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3