Removal and decomposition of malodorants by using titanium dioxide photocatalyst supported on fiber activated carbon

Author:

Nozawa M.1,Tanigawa K.1,Hosomi M.1,Chikusa T.2,Kawada E.3

Affiliation:

1. Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan

2. Research and Development Center, Unitika Ltd., 23 Ujikozakura, Uji, Kyoto 611-0021, Japan

3. Planning Research and Development Division, Nippon Filcon Co., Ltd., 2220 Omaru, Inagi, Tokyo 206-8577, Japan

Abstract

Effective and compact deodorization systems have been required for the measure of small-scale emission sources of offensive odors usually found in urban areas. We have developed a sheet material with titanium dioxide (TiO2) photocatalyst supported on fiber activated carbon (FAC) for a compact deodorization system. In the deodorization system using the TiO2 /FAC sheet and a ultraviolet lamp, malodorants can be collected on the TiO2 /FAC sheet by adsorption and then decomposed by photocatalysis with UV-irradiation. In this study, we obtained basic information about the removal and the decomposition of malodorants in the photocatalytic deodorization system using the TiO2 /FAC sheet. The malodorants used in this study were methyl mercaptan, ammonia, and hydrogen sulfide. In addition, two kinds of light sources, a black light bulb (BLB; dominant wavelength: 365 nm) and an ultraviolet germicidal lamp (UV2; dominant wavelength: 254 nm) were used to analyze the effect on removal and decomposition characteristics by different dominant wavelengths. The removal rates of malodorants from the gas phase were determined in the deodorization system in the presence or absence of the TiO2 /FAC sheet and UV-irradiation in order to study each removal effect due to adsorption onto the TiO2 /FAC sheet, direct photolysis by UV-irradiation, and photocatalytic decomposition. The effect of adsorption onto the TiO2 /FAC sheet was pronounced in this batch-type experiment. The effect of photocatalysis was observed from the removal rates of methyl mercaptan. The percent oxidation of ammonia to nitrate and that of methyl mercaptan to sulfate were examined by determining products, i.e. nitrate and sulfate ions, with purified water after the reaction. The formation of nitrate or sulfate was not observed without UV-irradiation using the BLB, while the reactions progressed in the presence of the TiO2 /FAC sheet. When the UV2 lamp was used, the oxidation of methyl mercaptan to sulfate occurred without the TiO2 /FAC sheet. This suggests that the decomposition characteristics of malodorants were dependent on the wavelength of the light source.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3