Estrogenic influences of estradiol-17b, p-nonylphenol and bis-phenol-A on Japanese Medaka (Oryzias latipes) at detected environmental concentrations

Author:

Tabata A.1,Kashiwada S.23,Ohnishi Y.2,Ishikawa H.2,Miyamoto N.2,Itoh M.2,Magara Y.1

Affiliation:

1. Department of Urban Environmental Engineering, Faculty of Engineering, Hokkaido University, N-13, W-8, Kita-ku, Sapporo, 060–8626, Japan

2. Institute of Environmental Ecology, Shin-Nippon Meteorological & Oceanographical Consultant Co. Ltd., Oh-igawa 1334–5, Shizuoka, 421–0212, Japan

3. To whom correspondence should be addressed

Abstract

Mature male medaka were continuously exposed to 0.005, 0.0–5 or 1.0 ppb of estradiol-17β (E2 or 0.1, 10 or 100 ppb of p-nonylphenol (NP) or bis-phenol-A (BPA). Female-specific proteins (Fsp) were induced in medaka exposed to 0.005 ppb of E2, 0.1 ppb of NP, or 10 ppb of BPA. Concentrations of 0.005 pbb of E2 and 0.1 ppb of NP corresponded to concentrations of these chemicals detected in river water in Japan. The abilities of the 3 chemicals to induce Fsp were E2> NP> BPA. Embryonic medaka were exposed to E2, NP and BPA under conditions of static-renewal for 200–230 days until pre-maturity. Survival ratios of medaka exposed to E2 and NP declined in concentrations more than 25 ppb and 50 ppb, respectively. The groups of medaka exposed to E2 had individuals with testis-ova or abnormal gonad. There was no male in exposure to 1.0 ppb E2. When exposed to 100 ppb of NP or BPA, abnormal gonad was also detected. Abnormal anal fin (female-like) was observed in male exposed to 100 ppb of NP. The LC50 values for each of the 3 chemicals were much higher than the concentrations detected in water in the environment—the 3 chemicals were considered to have no lethal effect on medaka in aquatic environments. However, exposures to E2 or NP at environmental concentrations induced Fsp. BPA also had the ability to affect medaka as an environmental estrogen, although its extrogenic activity was weaker than that of E2 or NP.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3