Affiliation:
1. National Institute of Hydrology,, Roorkee, 247 667, (U.A.), India
2. Department of Earth Sciences, Indian Institute of Technology, Roorkee, -247 667, (U.A), India
Abstract
In spite of the vital role of high altitude climatology in melting of snow and glaciers, retreat or advancement of glaciers, flash floods, erosion and sediment transport, etc., weather conditions are not much studied for the high altitude regions of Himalayas. In this study, a comprehensive meteorological analysis has been made for the Gangotri Meteorological Station (Bhagirathi Valley, Garhwal Himalayas) using data observed for four consecutive melt seasons (2000–2003) covering a period from May to October for each year. The collected meteorological data includes rainfall, temperature, wind speed and direction, relative humidity, sunshine hours and evaporation. The results and their distribution over the different melt seasons were compared with available meteorological records for Dokriani Meteorological Station (Dingad Valley, Garhwal Himalayas) and Pyramid Meteorological Station (Khumbu Valley, Nepal Himalayas). The magnitude and distribution of temperature were found to be similar for different Himalayan regions, while rainfall varied from region to region. The influence of the monsoon was meagre on the rainfall in these areas. July was recorded to be the warmest month for all the regions and, in general, August had the maximum rainfall. For all the stations, daytime up-valley wind speeds were 3 to 4 times stronger than the nighttime down-valley wind speeds. It was found that the Gangotri Glacier area experienced relatively low humidity and high evaporation rates as compared to other parts of the Himalayas. Such analysis reveals the broad meteorological characteristics of the high altitude areas of the Central Himalayan region.
Subject
Water Science and Technology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献