Scour model for circular compound bridge pier

Author:

Nimbalkar Padmakar1ORCID,Rathod Praveen1,Manekar Vivek1,Bhalerao Anand2

Affiliation:

1. a Civil Engineering Department, SVNIT, Surat, India

2. b BVDUCOE, Pune, India

Abstract

Abstract Scour is a complex phenomenon, whose complexity increases with the change in the geometry of the obstruction. Most investigations have been carried out on the scour process at a uniform pier. However, in reality, many bridge piers behave as non-uniform depending on the exposure of their foundation into the flow field. All the experimental investigations were carried out in the present study to understand the effect of pier geometry, the position of footing top with respect to bed level, and sediment mixtures (uniform and non-uniform) on local scour under clear water conditions. A total of 106 experiments were conducted in the present study with a different combination of pier models, sediment mixture, and footing top with respect to bed. A maximum scour depth model was developed using 182 data points consisting of experimental data (106) and extracted from the literature (76). To develop a model, a state-of-the-art artificial intelligence (AI) based modeling technique known as gene expression programming (GEP) was employed in this study. The GEP model was developed by using 130 data points and independent 52 data points for the model validation. The performance of the proposed scour model for the compound bridge pier was found to be satisfactory.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference21 articles.

1. Estimation of clear-Water local scour at pile groups using genetic expression programming and multivariate adaptive regression splines;Journal of Waterway, Port, Coastal, Ocean Engineering,2019

2. Local scour at bridge piers with non-uniform sediments;Proceedings of the Institution of Civil Engineers,1989

3. Clear water scour at circular piers: a model;Journal of Hydraulic Engineering,1995

4. Gene expression programming: a new adaptive algorithm for solving problems;Complex Systems,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3