Characterizing hydrological-sensitive areas of the Kinyerezi river sub-catchments in Dar es Salaam, Tanzania using the topographic index approach

Author:

Swilla Livingstone12ORCID,Katambara Zacharia1,Lingwanda Mwajuma1

Affiliation:

1. a Department of Civil Engineering, College of Engineering and Technology, Mbeya University of Science and Technology, P.O. Box 131, Mbeya, Tanzania

2. b Department of Water Supply and Irrigation Engineering, Water Institute, P. O. Box 35059, Dar es Salaam, Tanzania

Abstract

Abstract Several areas experience frequent floods due to anthropogenic activities. Among them, is the Dar es Salaam city, which experiences frequent floods along the Msimbazi River, whose flows originate from different tributaries including the Kinyerezi River. This study aims to evaluate the hydrological-sensitive areas of the Kinyerezi River sub-catchments using topographic index values (λ*) that enable the identification of areas with a higher probability of generating surface runoff. A digital elevation model was utilized to delineate the Kinyerezi River sub-catchment characteristics using ArcGIS 10.4. Soil infiltration rates (Ks) on selected open places were determined using a Guelph permeameter. Soil particle size distributions were analyzed and the λ* values were evaluated. The results showed the particle size distribution contains sand and silt-clay ranging from 46 to 84% and 16 to 53%, respectively. The Ks ranged from 0.6 to 7.8 mm/h while the sub-catchment KS3 scored the highest λ* value of about 10.7. Hence, there is a higher probability for generating surface runoff. Sub-catchment KS16 scored the smallest λ* value of 5.7, perceived to generate less surface runoff. Low-impact development practices capable of capturing runoff and enabling infiltration, evaporation, and detention should be employed in sub-catchments with higher λ* values.

Funder

Water Institute

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3