Experimental investigation of hydraulic characteristics and energy dissipation in a baffle-drop shaft

Author:

Yang Qinghua1,Yang Qian1

Affiliation:

1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract

Abstract The baffle-drop shaft structure is usually applied in deep tunnel drainage systems to transfer shallow storm water to underground tunnels. At present, the definition of the maximum operational capacity of baffle-drop shafts is lack of scientific and reasonable analysis, and the researches on hydraulic and energy dissipation characteristics have been insufficient. In this paper, a 1:25 scale hydraulic model test was conducted to observe the flow phenomena during the discharge process, analyze the relationship between the maximum inflow discharge and the baffle parameters, and calculate the energy dissipation rate of the shaft under different flow conditions. The results demonstrated that three kinds of flow regimes were presented in the discharge process: wall-impact confined flow, critical flow, and free-drop flow. The impact wave majorly brought about the energy dissipation of water on the baffle. The impingement and breakup of the inflow at the bottom of the drop shaft, as well as the reverse flow, resulted in the final energy loss. The time-averaged pressure value of the upper baffle was 1.5–3 times that of the central and lower baffles. The baffle with a design angle could effectively reduce the time-averaged pressure of the water flow acting on the baffle. The energy dissipation rate of the drop shaft decreased with the increase in the inflow discharge, and the energy dissipation rate was found to range from about 63.14% to 96.40%. The optimal size of the baffle-drop shaft with the maximum energy dissipation rate was d/B = 0.485 and θ = 10° (d, B, and θ are the baffle spacing, width, and angle, respectively).

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3