The feasibility of electro-osmotic belt filter dewatering technology at pilot scale

Author:

Snyman H. G.1,Forssman P.2,Kafaar A.3,Smollen M.3

Affiliation:

1. ERWAT Chair in Wastewater Management, University of Pretoria, Department of Chemical Engineering, (Water Utilisation Section), Pretoria 0001, South Africa

2. Steinmuller Africa, P.O. Box 1537, Rivonia 2128, South Africa

3. CSIR Environmentek, P.O. Box 320, Stellenbosch 7599, South Africa

Abstract

Sewage sludge is typically dewatered using drying beds, belt filter presses or centrifuges. Mechanical dewatering of sludge is costly in terms of capital and running costs, especially the flocculent. In an attempt to address the need for more cost-effective dewatering technologies, electro-osmotic belt filtering was developed by Smollen and Kafaar in 1995. Themechanical equipment resembles a belt filter press but the belts are stainless steel, woven belts, which act as the electrodes. In this study, thefeasibility of the technology was tested at pilot scale using wasteactivated-, anaerobically digested- and dissolved air flotation sludge. The parameters which were investigated includes the applied voltage, polyelectrolyteusage and sludge feed rate. Applied voltage of between 15 and 25 volts increased the dewatering significantly in the waste activated- and anaerobically digested sludge. Applying a voltage in dissolved air flotation sludge could not enhance the efficiency of dewatering, unless stored to de-air. The technology was found as sensitive to polyelectrolyte dosages as belt presses. The performance of the electro-osmotic belt filter was sensitive to feed rate, but performed well with non-thickened waste activated sludge (0.61% solids), resulting in cake solids above 20%.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3