Minimization of activated sludge production by chemically stimulated energy spilling

Author:

Chen G.-H.1,Mo H.-K.1,Saby S.2,Yip W.-k.1,Liu Y.3

Affiliation:

1. Department of Civil Engineering, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China

2. VIVENDI Water Research Centre Asia Pacific c/o Hong Kong University of Science & Technology, Room 3636, Annex Building, Clear Water Bay, Kowloon, Hong Kong, China

3. Division of Water Resources and Transportation, School of Civil and Structural Engineering, Nangyang Technological University, Nangyang Avenue, Singapore

Abstract

Minimization of excess sludge production in activated sludge processes has been pursued around the world in order to meet stringent environmental regulations on sludge treatment and disposal. To achieve this goal, physical, chemical, and biological approaches have been proposed. In this paper, a chemical compound, 3,3′,4′,5-tetrachlorosalicylanilide (TCS) was tested for enhancing microbial energy spilling of the sludgeso as to minimize its growth. In order to examine this, an exploratory study was conducted using both batch and continuous activated sludge cultures. Batch experiments with these two cultures were carried out at different initial concentrations of TCS. It has been confirmed that an addition of TCS is effective in reducing the production of both the sludge cultures, particularly the continuous culture where the observed growth yield was reduced by around 70%, when the initial TCS concentration was 0.8 ppm. Meanwhile, the substrate removal activity of this culture was found not to be affected at this TCS concentration. To further evaluate the TCS effect, a pure microbial culture of E. coli was employed. Batch experiment results with this culture implied that TCS might be able to reduce the cell density of E. coli drastically when an initial TCS concentration was greater than 0.12 ppm. It was also found that TCS was not toxic to this type of bacteria. Microscopic examinations with a 4′, 6-diamidino-2-phenylindole (DAPI) staining technique revealed that TCS neither affected the cell division nor altered the cell size of E. coli. However, both the cell ATP content and the cell dry weight were reduced significantly with the addition of TCS.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3