Affiliation:
1. Department Agrotechnology and Food Sciences, Sub-department of Environmental Technology, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, The Netherlands
Abstract
Complete biodegradation of azo dyes requires an anaerobic and aerobic step, in the anaerobic step sulfonated azo dyes (SADs) are reduced, yielding (sulfonated) aromatic amines ((S)AAs) which can be degraded aerobically. The complete biodegradation of the SAD Mordant Yellow 10 (MY10) was studied in a sequential anaerobic and aerobic bioreactor. Anaerobically, MY10 was reductively cleaved and the resulting aromatic amines, 5-aminosalicylic acid (5-ASA) and sulfanilic acid (SA), were both recovered in high stoichiometric yields. One of the AAs, 5-ASA, was readily degraded under aerobic conditions. However, SA was not degraded aerobically in the continuous experiment because no SA-degrading bacterial activity was present in the system. Therefore, a SA-degrading enrichment culture derived from Rhine sediment was used as an inoculum source. This enrichment culture was bioaugmented into the aerobic reactor by increasing the hydraulic retention time (HRT), thus enabling SA-degrading activity to develop and maintain in the aerobic reactor. After decreasing the HRT, the SA-degrading activity remained in the bioreactor and the stoichiometric recovery of sulfate (a SA biodegradation product) indicated the mineralization of SA after bioaugmentation. Batch experiments with aerobic reactor sludge confirmed the biodegradation of SA and 5-ASA. The sequential anaerobic and aerobic bioreactor was able to completely remove the sulfonated azo dye MY10 at a maximum loading rate of 210 mg MY10 (lreactor d)-1 after the appropriate microorganisms for aerobic degradation of SA were bioaugmented into the aerobic bioreactor.
Subject
Water Science and Technology,Environmental Engineering
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献