An oscillating bottom boundary layer connects the littoral and pelagic regions of Lake Opeongo, Canada

Author:

Coman Melissa Anne,Wells Mathew Graeme

Abstract

The movement of a thermocline can drive strong benthic currents, which can transport nutrients from sediments into the water column via pore water advection or sediment resuspension. We report field observations of near-shore benthic velocities and offshore thermocline movements in Lake Opeongo; a medium-sized lake typical of the Canadian Shield. We find that during large thermocline deflections there are sustained currents >6 cm s−1 in the near-shore benthic layer. The mean current was 1.75 cm s−1 and the maximum current is 10.3 cm s−1. At our site, the net transport is offshore even though the thermocline oscillates up and down so that currents are sometimes upslope and inshore. We estimate the excursion length of a water parcel over the 31-day deployment period, and determine that the mean daily excursion length is 630 m, with the maximum value being 2 km offshore. Given that the south arm of Lake Opeongo is 6 km long and 0.6 km wide, the predicted excursion length of water implies that there is strong connectivity between the sediment in the littoral zone, and the metalimnetic waters offshore. As Lake Opeongo is oligotrophic, any nutrient pulses from the sediment will be quickly taken up by the plankton.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3