Spring Circulation Associated with the Thermal Bar in Large Temperate Lakes

Author:

Malm Joakim

Abstract

The overall circulation pattern in spring is rather specific as density-induced currents may be of significance. The density-driven circulation perpendicular to the shore can be described as consisting of two circulation cells, with a zone of convergence, referred to as thermal bar, in between. The thermal bar, which coincides with the 4°C isotherm (the temperature of maximum density), inhibits horizontal water exchange, implying its practical importance. In this paper, a hydrodynamic numerical model is used to study the relative influence of wind- and density-driven currents in a large temperate lake during spring. The study shows that the general density-driven circulation is strongly dependent on the bottom topography, with a more pronounced circulation and considerable descending motions in the thermal bar zone in lakes with steep sloping bottoms. In shallow lakes, the wind-driven circulation dominates, and the effect of density-induced currents is marginal, except at locations with a drastic change in bottom depth.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of wind on deep convection in Lake Baikal during the autumnal thermal bar;Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya;2024-05-02

2. Wind Effects on Deep Convection in Lake Baikal during the Autumnal Thermal Bar;Moscow University Physics Bulletin;2024-04

3. Water Movements;Wetzel's Limnology;2024

4. Reconciling zoogeography and genetics: Origins of deepwater Cisco Coregonus artedi (sensu lato) in the Great Lakes;Transactions of the American Fisheries Society;2023-11-04

5. Effect of Underwater Relief on the Dynamics of the Autumnal Thermal Bar;Moscow University Physics Bulletin;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3