Removal of a Dye from an Aqueous Solution by the Fungus Aspergillus niger

Author:

Fu Yuzhu1,Viraraghavan T.1

Affiliation:

1. Faculty of Engineering, University of Regina, Regina, Saskatchewan S4S 0A2

Abstract

Abstract Biosorption is becoming a promising alternative to replace or supplement the present dye removal processes from dye wastewater. In this study, removal of a dye, Basic Blue 9, from an aqueous solution by biosorption on the dead fungal biomass Aspergillus niger was studied. The effective pretreatment method for increasing the biosorption capacity of A. niger was investigated. Autoclaving was found to effectively enhance the biosorption capacity of A. niger to 18.54 mg/g compared with 1.17 mg/g of living cells for Basic Blue 9. Batch pH, kinetic and isotherm studies were conducted to evaluate the biosorption capacity of the pretreated (dead) biomass. The initial pH of the dye solution strongly affected the biosorption capacity and rate. The effective initial pH was between 4 and 6. The equilibrium time varied with the initial pH of the dye solution and was set at 30 h because no significant dye removals occurred after that time of contact. The Lagergren and Ho et al. models can be used to describe the kinetics of Basic Blue 9 biosorption on A. niger successfully for different initial pH values, except for pH 4. At initial pH 4, biosorption of Basic Blue 9 fitted the Langmuir equation well; at initial pH 10, the Langmuir and Freundlich isotherm models both fitted biosorption well. The results of this study indicated that fungal biomass of A. niger can be used for removing Basic Blue 9 from an aqueous solution.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3