Hydrogeochemical evolution and processes based on multivariable statistical and inverse simulation modeling: A coal mine in the Northern Coalfield, China

Author:

Zhu Jingzhong1ORCID,Li Wenping1,Zhao Baoxin2,Jiang Qilin2

Affiliation:

1. a School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China

2. b School of Earth and Environment, Anhui University of Science and Technology, Huainan, China

Abstract

ABSTRACT Considering groundwater from the aquifers overlying the bedrock is an important water source for drinking purposes. As such, the investigation of its property is essential. Based on the spatial structure of aquifers in the study area, the aquifers in the Cenozoic strata are divided into three groups. The multivariate statistical approaches are employed to identify the hydrogeochemical processes and hydro-chemical types, and hydrogeochemical inverse modeling is applied to further validate and elucidate the hydrogeochemical process and water–rock interaction. The results are as follows: (1) The hydro-chemical type of the upper aquifer is dominated by the K + Na-HCO3 type, while others have similar water quality types, which are dominated by the K + Na-Cl type and the K + Na-SO4 type. (2) The saturation index of anhydrite, gypsum, halite, and CO2(g) is below zero in three aquifers, indicating that they are unsaturated. While aragonite, calcite, and dolomite in the middle aquifer remain in the unsaturated–saturated state. (3) The cation exchange process accelerating the reduction of Ca2+ concentration and the increase of SO42− concentration occurs in three aquifers, and the dissolution of calcite and dolomite minerals occurs in most cases. This study supports the fundamental evidence for the hydrogeochemical processes and water resource utilization and has a certain practical significance.

Funder

General Program of the National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Fundamental Research Funds for the Central Universities

Graduate Innovation Program of China University of Mining and Technology

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3