Particles under stress

Author:

Boller Markus1,Blaser Stefan2

Affiliation:

1. Swiss Federal Institute for Environmental Science and Technology, Ueberlandstr. 133, CH 8600 Duebendorf, Switzerland

2. Institute of Hydromechanics and Water Resources Management, ETH Hoenggerberg, CH 8093 Zuerich, Switzerland

Abstract

The complex nature of particulate matter in natural water resources and in waste waters is characterized by the heterogeneous distribution of particle size, shape, density, and shear strength. Among these parameters, floc strength is most important in the last stages of flocculation. Experimental data on floc strength based on different methods are assessed and correlated with shear gradients in different aquatic environments. The analysis of turbulent motion reveals that the energy which affects particle agglomerates is only a small portion of the totally dissipated energy. Among the different flow fields in turbulent motion, converging/diverging flow cause strain forces which prove to be critical with respect to floc rupture. Model calculations of the surface forces on ellipsoidal particles in pure shear and strain flow fields and corresponding experiments confirm the importance of converging flow. A comparison of modeled and measured rupture forces allows to establish relationships between floc size, strain and shear rates and resulting surface forces leading to probable floc break-up. Flocs of appreciable size (200 - 2000 μm) prepared for settling are likely to be ruptured under moderate velocity gradients occurring in flocculation tanks, whereas smaller agglomerates (< 200 μm) may withstand strain forces much higher than found under practical conditions. An example of model application shows the particle stress in the entrance to porous media filters where typically high strain gradients may easily lead to a breakup of flocs larger than 200 μm.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3