Using nanometer TiO2 modified with cetyl trimethyl ammonium bromide for separation and preconcentration of Parathion in water sample

Author:

Fathi Haghighe1,Soltani-Jigheh Robab2,Hemmati Saeed3

Affiliation:

1. Phase Separation & FIA Lab, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45195-313, Iran

2. Research Laboratory of Environment Protection Technology, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

3. Research Laboratory of Water Refinery, Department of Environmental Health Engineering, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

In this work, nanometer TiO2 modified by cetyl trimethyl ammonium bromide (CTAB) was used as adsorbent for solid-phase extraction (SPE) of Parathion in environmental water samples. Adsorbed Parathion was then desorbed with different eluents and determined by gas chromatography (GC)/flame ionization detection. Greater selectivity, resolution, and sensitivity have been seen by GC compared with other methods. Parameters that might influence the extraction efficiency, such as the eluent type and its volume, adsorbent amount, sample volume, sample pH and sample flow rate, were optimized. Under the optimized extraction conditions with toluene as the eluent, the experimental results showed the excellent linearity of Parathion (R2 > 0.99) over the range of 0.01–0.8 μg/mL, and the relative standard deviation was 6.3% (n = 5). The detection limit of the proposed method could reach 0.024 ng/mL based on the ratio of chromatographic signal to base line noise (S/N = 3). Recovery of 93% was achieved with spiked water samples. The method was successfully applied to the analysis of surface water samples.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference24 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3