Formation mechanism of injured bacteria after disinfection with epigallocatechin gallate (EGCG) as a disinfectant

Author:

Feng Cuimin1ORCID,Chen Zexin2,Guan Sairui2,Li Jing2,Qu Mengchao3,Geng Haochen2

Affiliation:

1. a Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

2. b School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

3. c Beijing Waterworks Group Co., Ltd, Beijing 100031, China

Abstract

ABSTRACT This study explored the effects of epigallocatechin gallate (EGCG), the main antibacterial component of tea polyphenols, on Escherichia coli in terms of disinfection damage and the underlying mechanisms. The researchers assessed inactivation and injury rates, cell morphology, and antioxidant indicators of E. coli when subjected to different concentrations of EGCG. The results showed that varying EGCG concentrations produced damaged bacteria, with the extent of damage depending on EGCG dosage and treatment duration. The disinfection process involving EGCG resulted in oxidative damage in E. coli, evoking alterations in the antioxidant system of the affected bacteria. During disinfection-induced bacterial injury, E. coli showed the active regulation of metabolism and redox activities in response to EGCG-induced environmental stimuli. Transcriptomic analysis was conducted to investigate the damage mechanism at the gene level. The damaged E. coli countered oxidative stress by adjusting gene expression related to peroxidase and glutathione metabolism processes. In this way, E. coli adjusts its gene expression to alleviate the detrimental effects of EGCG-induced oxidative stress and maintain cellular homeostasis. These findings contribute to our understanding of tea polyphenols' disinfection effects and provide insights into EGCG's mechanisms of damaging bacteria such as E. coli.

Funder

National Natural Science Foundation of China

Hebei Province Construction Science and Technology Research Project Guidance Plan Project

Open Research Fund Program of Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3