Natural organic matter as precursor to disinfection byproducts and its removal using conventional and advanced processes: state of the art review

Author:

Tak Surbhi1,Vellanki Bhanu Prakash1

Affiliation:

1. Environmental Engineering Laboratory, Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttrakhand 247667, India

Abstract

Abstract Natural organic matter (NOM) is ubiquitous in the aquatic environment and if present can cause varied drinking water quality issues, the major one being disinfection byproduct (DBP) formation. Trihalomethanes (THMs) are major classes of DBP that are formed during chlorination of NOM. The best way to remove DBPs is to target the precursors (NOM) directly. The main aim of this review is to study conventional as well as advanced ways of treating NOM, with a broad focus on NOM removal using advanced oxidation processes (AOPs) and biofiltration. The first part of the paper focuses on THM formation and removal using conventional processes and the second part focuses on the studies carried out during the years 2000–2018, specifically on NOM removal using AOPs and AOP-biofiltration. Considering the proven carcinogenic nature of THMs and their diverse health effects, it becomes important for any drinking water treatment industry to ameliorate the current water treatment practices and focus on techniques like AOP or synergy of AOP-biofiltration which showed up to 50–60% NOM reduction. The use of AOP alone provides a cost barrier which can be compensated by the use of biofiltration along with AOP with low energy inputs, making it a techno-economically feasible option for NOM removal.

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

Reference141 articles.

1. Detachment of particles during biofilter backwashing;J. Am. Water Works Assoc.,1998

2. Isolation of hydrophilic organic acids from water using nonionic macroporous resins;Org. Geochem.,1992

3. UV oxidation for drinking water–feasibility studies for addressing specific water quality issues,1995

4. Formation of chlorination by-products in waters with low SUVA – correlations with SUVA and differential UV spectroscopy;Water Res.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3